Deep Learning
Forecasting Customer Behavior

Artit “Art” Wangperawong
artitw@gmail.com
Telco customer – will he leave the service?
Target Data Selection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Implied date range</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 day churn window start</td>
<td>24 Sep 2015</td>
<td>24 Sep - 23 Oct</td>
</tr>
<tr>
<td>Last call window</td>
<td>14 days</td>
<td>10 Sep – 23 Sep</td>
</tr>
<tr>
<td>Time before last call</td>
<td>14 days</td>
<td>27 Aug – 23 Sep</td>
</tr>
<tr>
<td>Predictor window</td>
<td>30 days</td>
<td>28 Jul – 9 Sep</td>
</tr>
<tr>
<td>Minimum age on network</td>
<td>90 days</td>
<td>< 28 Jul</td>
</tr>
</tbody>
</table>

Parameter table visualized graphically with timelines for each parameter.
Telco churn DL – customer as image

Label:

0 1 0 0

Row 1 = Day 1
Row 2 = Day 2
...
Row n = Day n

Data usage, SMS in, voice out, etc.

Artit Wangperawong
One architecture: DL-1

Artit Wangperawong
One architecture: DL-1

Convolution - 4 filters
7x1

Convolution - 2 filters
1x10

Fully Connected

Fully Connected

ReLU

ReLU

ReLU

SOFTMAX

Artit Wangperawong
DL versus SPSS

<table>
<thead>
<tr>
<th>AUC</th>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPSS CHAID</td>
<td>0.699</td>
<td>0.665</td>
</tr>
<tr>
<td>DL-1</td>
<td>0.751</td>
<td>0.706</td>
</tr>
<tr>
<td>DL-2</td>
<td>0.748</td>
<td>0.743</td>
</tr>
</tbody>
</table>
Autoencoder – unsupervised learning

$$a_i^{(2)} = f \left(\sum_{j=1}^{100} W_{ij}^{(1)} x_j + b_i^{(1)} \right).$$

$$x_j = \frac{W_{ij}^{(1)}}{\sqrt{\sum_{j=1}^{100} (W_{ij}^{(1)})^2}}.$$
Images that maximally activate hidden units of autoencoder for all customers
Images that maximally activate the weights of the autoencoder for churn

General usage dropoff

Strong data usage

Pure data user
Customer who churned

1) Very high usage of data and only data
2) Usage of the phone only from 14-16th days
3) Almost no usage during the 30 days period
Churn analysis using deep convolutional neural networks and autoencoders

Artit Wangperawonga,b,*
Cyrille Brunc
Dr. Olav Laudye
Rujikorn Pvasuthipaisita

a True Corporation Public Company Limited, Bangkok 10310, Thailand
b Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
c International Business Machines Corporation, Singapore 486048

* To whom correspondence should be addressed; Email: artitw@gmail.com

Customer temporal behavioral data was represented as images in order to perform churn prediction by leveraging deep learning architectures prominent in image classification. Supervised learning was performed on labeled data of over 6 million customers using deep convolutional neural networks, which achieved an AUC of 0.743 on the test dataset using no more than 12 temporal features for each customer. Unsupervised learning was conducted using autoencoders to better understand the reasons for customer churn. Images that maximally activate the hidden units of an autoencoder trained with churned customers reveal ample opportunities for action to be taken to prevent churn among strong data, no voice users.

Keywords: machine learning, deep learning, big data, churn prediction, telecommunications

Deep learning by convolutional neural networks (CNNs) has demonstrated superior performance in many image processing tasks [1,2,3]. In order to leverage such advances to predict churn and take pro-active measures to prevent it, we represent customers as images. Specifically, we construct a 2-dimensional array of normalized pixels where each row is for each day and each column is for each type of behavior tracked (Fig. 1). The type of behavior can include data usage, top up amount, top up frequency, voice calls, voice minutes, SMS messages, etc. In the training and testing data, each image is also accompanied by its label – 1 for churned and 0 for not churned. For this analysis, we examine prepaid customers in particular.
What’s next? Reinforcement Learning

• No need to classify target
 • Can forecast real values

• Not specific to telco or churn
 • Applicable across industries and use-cases, including retail and advertising
 • How much will customers spend next month?
 • How much revenue will advertisements generate?